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Abstract. In times of global change, we must closely monitor the state of the planet in order to understand gradual or abrupt

changes early on. In fact, each of the Earth’s subsystems—i.e. the biosphere, atmosphere, hydrosphere, and cryosphere—can

be analyzed from a multitude of data streams. However, since it is very hard to jointly interpret multiple monitoring data

streams in parallel, one often aims for some summarizing indicator. Climate indices, for example, summarize the state of

atmospheric circulation in a region. Although such approaches are also used in other fields of science, they are rarely used5

to describe land surface dynamics. Here, we propose a robust method to create indicators for the terrestrial biosphere using

principal component analysis based on a high-dimensional set of relevant global data streams. The concept was tested using

12 explanatory variables representing the biophysical states of ecosystems and land-atmosphere water, energy, and carbon

fluxes. We find that two indicators account for 73% of the variance of the state of the biosphere in space and time. While

the first indicator summarizes productivity patterns, the second indicator summarizes variables representing water and energy10

availability. Anomalies in the indicators clearly identify extreme events, such as the Amazon droughts (2005 and 2010) and the

Russian heatwave (2010), they also allow us to interpret the impacts of these events. The indicators also reveal changes in the

seasonal cycle, e.g. increasing seasonal amplitudes of productivity in agricultural areas and in arctic regions. We assume that

this generic approach has great potential for the analysis of land-surface dynamics from observational or model data.

1 Introduction15

Today, humanity faces the global impacts of land use and land cover change (Song et al., 2018), global warming (IPCC,

2014), and associated losses of biodiversity (IPBES, 2019), to only mention the most prominent transformations. Over the past

decades, new satellite missions (Berger et al., 2012), along with the continuous collection of more ground based measurements

(Baldocchi et al., 2001; Baldocchi, 2008), and the generation of model data to anticipate future dynamics in the Earth system

(Eyring et al., 2016) have increased our capacity to monitor the Earth’s surface enormously. However, there are still large20

knowledge gaps limiting our capacity to monitor and understand the current changes of the Earth system (Rockström et al.,

2009). Regional trends of vegetation greening and browning that have been attributed to fertilization effects on the one hand,

and long-term climate change on the other, need to be understood (de Jong et al., 2011; Zhu et al., 2016; Wright et al., 2017).

Changes in the seasonal cycles of primary production, e.g. decreased seasonal amplitudes in “cold” ecosystems due to warmer

winters (Stine et al., 2009) or increased seasonal amplitude in agricultural areas due to the so called “green revolution”, are25

1

https://doi.org/10.5194/bg-2019-307
Preprint. Discussion started: 21 August 2019
c© Author(s) 2019. CC BY 4.0 License.



expected (Zeng et al., 2014). In general, phenological patterns are changing in the wake of climate change, leading primarily

to changes in the onset of spring (Schwartz, 1998; Parmesan, 2006). Additionally, we are confronted with cascading effects

induced by today’s increasing frequencies and magnitudes of extreme events (Barriopedro et al., 2011; Reichstein et al., 2013)

which are yet to be fully understood (Flach et al., 2018; Sippel et al., 2018). The question is, how to uncover and summarize

effects of this kind from the wealth of available global data streams? Do we need to develop specific solutions for every30

observed phenomenon or can we develop a single approach to uncover a wide variety of phenomena.

Extracting the dominant dynamics from high-dimensional observations is a well-known problem in many disciplines. In

climate science, for example, it is common to summarize atmospheric states using Empirical Orthogonal Functions (EOF),

also known as Principal Component Analysis (PCA; Pearson, 1901). The rationale is that dimensionality reduction retains

the main data features, but makes them better accessible to intuitive interpretations. One of the most prominent examples35

is the description of the El Niño Southern Oscillation (ENSO) dynamics in the multivariate ENSO index (MEI; Wolter and

Timlin, 2011), an indicator describing the state of the regional circulation patterns at a certain point in time. The MEI is a

very successful index that can be easily interpreted and used in a variety of ways, most basically it provides a measure for the

intensity and duration of the different quasi-cyclic ENSO events but it can also be associated with its characteristic impacts:

E.g. seasonal warming, changes in seasonal temperatures and overall dryness in the Pacific Northwest of the United States40

(Abatzoglou et al., 2014), drought related fires in the Brazilian Amazon (Aragão et al., 2018), and yield anomalies (Najafi

et al., 2019).

In plant ecology, indicators based on dimensionality reduction methods are used to describe changes to species assemblages

along unknown gradients (Legendre and Legendre, 1998; Mahecha et al., 2007a). The emerging gradients can be interpreted

using additional environmental constraints, or based on internal plant community dynamics (van der Maaten et al., 2012). It45

is also common to compress satellite based Earth Observations via dimensionality reduction to get a notion of the underlying

dynamics of terrestrial ecosystems. For instance, Ivits et al. (2014) showed that one can understand the impacts of droughts and

heatwaves based on a compressed view of the relevant vegetation indices. In general, dimensionality reduction is the method

of choice to compress high-dimensional observations in a few (ideally) independent components with little loss of information.

Understanding changes in land-atmosphere interactions is a complex problem, as all aforementioned changes may occur50

and interact: Land cover change may alter biophysical properties of the land surface such as albedo with consequences for

the energy balance. Long-term trends in temperature, water availability, or fertilization may impact productivity patterns and

biogeochemical processes. In fact, these land surface dynamics have multidimensional implications and require monitoring of

biophysical state variables such as leaf area index, albedo, etc., as well as associated land-atmosphere fluxes of carbon, water,

and energy.55

Here, we aim to summarize these high-dimensional surface dynamics and make them accessible to subsequent interpreta-

tions. Specifically, we seek a set of independent, yet comprehensive, state indicators. We want to have a set of very few indi-

cators that represent the most dominant features of the above described temporal ecosystem dynamics. The approach should

also give an idea of the general complexity contained in the available data streams. If more than a single indicator is required

to describe land surface dynamics accurately, then these indicators shall describe very different aspects. While one indicator60

2

https://doi.org/10.5194/bg-2019-307
Preprint. Discussion started: 21 August 2019
c© Author(s) 2019. CC BY 4.0 License.



may describe global patterns of change, others could be only relevant in certain regions, for certain types of ecosystems, or

for specific types of impacts. The indicators shall have a number of desirable properties: (1) Representing the overall state

of parts comprising the system in space and time. (2) Carrying sufficient information to allow for reconstructing the original

observations faithfully from these indicators. (3) Being of much lower dimensionality than the number of observed variables.

(4) Allowing intuitive interpretations.65

2 Methods

2.1 Data

Table 1. Variables used describing the biosphere, for a description of the variables, see appendix F.

Variable Details Source

Black Sky Albedo Directional reflectance Muller et al. (2011)

Evaporation [mmday−1] Martens et al. (2017)

Evaporative Stress Modeled water stress Martens et al. (2017)

fAPAR fraction of absorbed photosynthetically active radiation Disney et al. (2016)

Gross Primary Productivity (GPP) [gCm−2day−1] Tramontana et al. (2016)

Latent energy (LE) [Wm−2] Tramontana et al. (2016)

Net Ecosystem Exchange (NEE) [gCm−2day−1] Tramontana et al. (2016)

Root-Zone Soil Moisture [m3m−3] Martens et al. (2017)

Sensible Heat (H) [Wm−2] Tramontana et al. (2016)

Surface Soil Moisture [mm3mm−3] Martens et al. (2017)

Terrestrial Ecosystem Respiration (TER) [gCm−2day−1] Tramontana et al. (2016)

White Sky Albedo Diffuse reflectance Muller et al. (2011)

Table 1 gives an overview of the data streams used in this analysis (for a more detailed description in appendix F). For an

effective joint analysis of more than a single variable, the variables have to be harmonized and brought to a single grid in space

and time. The Earth System Data Lab (ESDL; www.earthsystemdatalab.net) curates a comprehensive set of data streams to70

describe multiple facets of the terrestrial biosphere and associated climate system. The data streams are harmonized as analysis

ready data on a common spatiotemporal grid (0.25° in space and 8 days in time), forming a 4d hypercube, which we call a data

cube. The ESDL not only curates Earth system data, but also comes with a toolbox to analyze this data efficiently.

In this study, each variable was normalized globally to zero mean and unit variance to account for the differences in scales.

Because the area of the pixel changes with latitude, the pixels were weighted according to the represented surface area.75
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2.2 Dimensionality Reduction with PCA

As a method for dimensionality reduction, we used a modified principal component analysis (PCA) to summarize the infor-

mation contained in the observed variables. PCA transforms the set of d centered and, in this case, standardized variables into

a subset of p (1≤ p≤ d) principal components (PCs). Each component is uncorrelated with the other components, while the

first PCs explain the largest fraction of variance in the data.80

The data streams consist of d observed variables at the same time and location. Each observation is defined in a d-dimensional

space, xi ∈ Rd, and we define the dataset by collecting all samples in the matrix X = [x1| · · · |xn] ∈ Rd×n. The observations are

repeated in space and time and lie on a grid of lat× lon× time, which in our case are n= #lat×#lon×#time = 720×1440×
506, where # denotes the length of the dimension. Note that the actual number of observations was lower, n= 106360156,

because we considered land points only and removed missing values.85

To derive the PCs, we used an eigendecomposition of the covariance matrix,

Q = VΛVT ∈ Rd×d.

The covariance matrix, in this case, is equal to the correlation matrix because we standardized the variables to unit variance.

Λ is a diagonal matrix with the the eigenvalues, λ1, . . . ,λd, in the diagonal in decreasing order and V ∈ Rd×d, the matrix with

the corresponding eigenvectors in columns. V can project the new incoming input data xi (centered and standardized) onto the90

PCs:

yi = VT xi ∈ Rd, (1)

where yi is the projection of the observation xi onto the d PCs.

Because the observations were centered, the covariance matrix can be calculated by using a simple formula

Q =
1

n− 1
XXT =

1
n− 1

n∑

i=1

xixT
i . (2)95

Given that the data cube lies on a regular 0.25° grid, estimating Q as above would lead to overestimating the influence

of dynamics in high latitudes compared to lower latitudes where each data point represent largers areas. Hence, we used a

weighted approach to calculate the covariance matrix

Q =
1
w

n∑

i=1

wixixT
i , (3)

where wi = cos(lati) and lati is the latitude of observation i. w =
∑n

i=1wi is the total weight, and n the total number of100

observations. Equation (3) has the additional property that it can be computed sequentially on very big data sets, such as our

Earth system data cube, by consecutively adding observations.

The actual calculation of the covariance matrix was more complicated, because summing up many floating-point numbers

one by one can lead to large inaccuracies due to precision issues of floating-point numbers and instabilities of the naive
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algorithm (Higham, 1993; the same goes for the implementations of the sum function in most software used for numerical105

computing). Here, the Julia package WeightedOnlineStats.jl1 (implemented by the first author of this paper) is used,

which uses numerically stable algorithms for summation, higher precision numbers, and a map-reduce scheme that further

minimizes floating point errors.

The canonical measure of the quality of a PCA is the fraction of explained variance, calculated as

λi∑d
i=1λi

, (4)110

where λi is the i-th eigenvalue of the covariance matrix Q. To get a more complete measure of the accuracy of the PCA,

we used the “reconstruction error” in addition to the fraction of explained variance. PCA allows a simple projection of an

observation onto the first p PCs and a consecutive reconstruction of the observations from this p-dimensional projection. This

is achieved by

Yp = VT
p X ∈ Rp×n and Xp = VpYp ∈ Rd×n, (5)115

where Yp is the projection on the first p PCs, Vp the matrix consisting of the eigenvectors belonging to the p largest eigenval-

ues, and Xp the observations reconstructed from the first p PCs.

The reconstruction error, ei, was calculated for every point, xi in the space-time-domain based on the reconstructions from

the first p principal components:

ei = VpVT
p xi−xi ∈ Rd. (6)120

As this error is explicit in space, time and variable, it allows for disentangling the contribution of each of these domains to the

total error. This can be achieved by estimating e.g. the (weighed) mean square error

MSE =
1
w

∑

i

wie2
i (7)

where wi = cos(lati), lati the latitude of ei, w =
∑

iwi the total weight. Therefore, this approach can give a better insight into

the compositions of the error than a single global error estimate based on the eigenvalues.125

2.3 Pixel-wise analyses of time series

When calculating slopes using measured data, ordinary least squares regression is not the optimal choice because outliers can

significantly change the estimator. One possible solution is using the Theil-Sen estimator which is robust to up to 29.3% of

outliers (Theil, 1950; Sen, 1968). The calculation of the estimator consists simply on computing the median of the slopes

spanned by all possible pairs of points130

slopeij =
zi− zj

ti− tj
, (8)

1DOI: 10.5281/zenodo.3360311, repository: https://github.com/gdkrmr/WeightedOnlineStats.jl/
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where zi is the value of the response variable at time step i and ti the time at time step i. In our experiments, we computed the

slopes separately per pixel and principal component where time is the predictor and the value of the principal component is the

response variable.

To test the slopes for significance, we used the Mann-Kendall statistics (Mann, 1945; Kendall, 1970) and adjusted the135

resulting p-values with the Benjamini-Hochberg method to control for the false discovery rate (Benjamini and Hochberg,

1995). Slopes with an adjusted p < 0.05 were deemed significant.

For the calculation of the number of breakpoints, the generalized fluctuation test framework (Kuan and Hornik, 1995) was

used to test for the presence of breakpoints. The framework uses recursive residuals (Brown et al., 1975), and a breakpoint is

identified when the mean of the recursive residuals deviates from zero. We used the implementation in Zeileis et al. (2002).140

For practical reasons, here we only focus on the biggest breakpoint.

Hysteresis was calculated as the area, A, inside the polygon formed by the mean seasonal cycle of PC1 and PC2

A=
1
2

n∑

i=1

xi(yi+1− yi−1),

where n= 46, the number of time steps in a year, xi and yi the mean seasonal cycle of PC1 and PC2 at time step i, respectively.

The polygon is circular, i.e. the indices wrap around the edges of the polygon. This formula gives the actual area of the polygon145

if it is non-self-intersecting and the vertices run counterclockwise. If the vertices run clockwise, the area is negative. If the

polygon is shaped as an 8, the clockwise and counterclockwise parts will cancel each other (partially) out, e.g. the green

trajectory in fig. 2b. Trajectories that cover a larger range will also tend to have larger areas.

3 Results and Discussion

3.1 The PCA embedding150

Figure 1a shows the explained fraction of variance (Eq. 4) for the global PCA based on the entire data cube. We see that the first

two components explain 73% of the variance from the 12 variables; additional components contribute little < 10% explained

variance each. This results in a “knee” at component 2, which suggests that two indicators are sufficient to capture the major

global dynamics of the terrestrial land surface and therefore we focus on these components in the following analyses.

Using PCA as a method for dimensionality reduction means that we are assuming linear relations among features. A nonlin-155

ear method could possibly be more efficient in reducing the number of variables, but would also have significant disadvantages.

In particular: nonlinear methods typically require tuning of specific parameters, objective criteria are often lacking, a proper

weighting of observations is difficult, and it is harder to interpret the resulting indicators due to their nonlinear nature (Kraemer

et al., 2018). The salient feature of PCA is that an inverse projection is well defined and allows for a deeper inspection of the

errors, which is not the case for nonlinear methods due to the pre-imaging problem (Mika et al., 1999; Arenas-Garcia et al.,160

2013).

The contributions of each variable to the resulting indicators can be understood from the rotation matrix (Eq. 1, fig. 1b).

The first PC summarizes variables that are closely related to vegetation primary productivity (GPP, LE, NEE, fAPAR). These
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Figure 1. (a) Fraction of explained variance of the PCA by component. Components three and higher do not conrtibute much to total variance.

(b) Rotation matrix of the global PCA model, axis one describes primary productivity related variables, axis two describe water availability.

variables are related because they are all directly related to primary productivity. The energy for photosynthesis comes from

solar radiation, an indicator for the fraction of light used for photosynthesis is given by fAPAR. Photosynthesis fixes carbon165

from gaseous CO2 producing sugars to maintain the metabolism of plants, this total uptake of CO2 is reflected in GPP. However,

the CO2 uptake is closely related to water consumption. The actual uplift of water within the plant is not only essential to enable

photosynthesis, but also drives the transport of nutrients from the roots and is ultimately reflected in transpiration—together

with evaporation from soil surfaces one can observe the integrated latent energy needed for the phase transition (LE). However,

ecosystems also respire and hence CO2 is produced by plants in energy consuming processes as well as by the decomposition of170

dead organic materials via soil microbes and other heterotrophic organisms. This total respiration can be observed as terrestrial

ecosystem respiration (TER). The difference between GPP and TER is the net ecosystem exchange (NEE) rate of CO2 between

ecosystems and the atmosphere (Chapin et al., 2006).

On the second axis we observe variables that are related to the surface hydrology of ecosystems. Surface moisture, evapo-

rative stress, root-zone soil moisture, and sensible heat, are all essential indicators for the state of plant available water. While175

surface moisture is a rather direct measure, evaporative stress is a modeled quantity summarizing the level of plant stress, a

value of zero means that there is no water available for transpiration, while a value of one means that transpiration the potential

transpiration (Martens et al., 2017). Root-zone soil moisture is the moisture content of the root zone in the soil, the moisture

directly available for root uptake. If this quantity is below the wilting point, there is no water available for uptake by the plants.

Sensible heat is the exchange of energy by a change of temperature, if there is enough water available, then most of the surface180

heat will be lost due to evaporation (latent heat), with decreasing water availability more of the surface heat will be lost due to

latent heat, making this also an indicator of dryness.

The first two principal components form a triangle (gray background in fig. 2). On one edge of the first principal component

we find ecosystems in a high state of primary productivity (high values of GPP, fAPAR, LE, TER, and evaporation), mostly
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limited by radiation, while on the lower end of the principal component one we find states of low productivity. Ecosystem states185

of low productivity are further separated by the second principal component: Low productivity can coincide with radiation

limitation (the negative extreme of the second principal component) as seen in the lower left corner of the distribution in fig. 2a

and b or with water limitation (the positive extreme of the second principal component, the upper left corner in fig. 2a). This

pattern reflects the two essential global limitations of GPP in terrestrial ecosystems (Anav et al., 2015).

Both axes form the space in which most of the variability of ecosystems takes place. Axis one describes productivity and190

axis two the limiting factors to productivity. Therefore, we can see that most ecosystems with high values on axis one (a high

productivity) are at the approximate center of axis two. When ecosystems are found outside the center of axis two, they have

lower values on axis one (lower productivity) because they are limited by water or temperature (see fig. 2b).

Heat transfer from the surface into the atmosphere can happen either by radiative transfer (sensible heat) or evaporation

(latent heat). Their ratio is the “Bowen ratio”, B = LE
H , (Bowen, 1926; see also fig. C1), if there is enough moisture, then195

most of the energy will be dissipated by evaporation, B < 1, resulting in a high latent heat flux, but when the surface does not

contain much moisture the transfer by latent heat will be low and most of the incoming energy has to be dissipated via sensible

heat, B > 1. In higher latitudes, there is not much incoming radiation and the temperatures are low, therefore there is not much

energy to be dissipated and both heat fluxes are low. A high sensible heat flux is an indicator for water limitation and both low

sensible and latent heat flux are indicators for ecosystems that are limited by low temperatures and low amounts of incoming200

radiation. We can see that the bowen ratio embedds well into the space spanned by the first two PCs.

3.2 Trajectories

The principal components may be used to summarize the movement of a spatiotemporal pixel in variable space, so that they

represent the current state of the ecosystem at a certain location in space and time (fig. 2a) or time of year of the mean seasonal

cycle of the pixel (fig. 2b).205

Because the underlying data are 8-daily resolution, we can observe the seasonal variability and find that the seasonal cycles

of very different regions of the world can substantially overlap. We see that very different ecosystems may reach very similar

states in the course of the season, even though their seasonal dynamics are very distinct. For instance, mid-latitude areas

(blue trajectory in fig. 2) show very similar characteristics to tropical forests during their peak growing season because their

patterns of productivity and water availability are similar (see also SI fig. D1). Likewise, many high latitude areas show similar210

characteristics to mid-latitude areas during winter (low latent and sensible energy release as well as low GPP) and many dry

areas such as deserts show similar characteristics to areas with a pronounced dry season, e.g. the Mediterranean.

Ecosystems states shift from limitation to growth during the year (fig. 2b, e.g. Forkel et al., 2015). For example, the orange

trajectory in fig. 2, an area close to Moscow, shifts from a temperature limited state in winter to a state of very high productivity

during summer. Other ecosystems remain in a single limitation state with only slight shifts, such as the red trajectory in fig. 2.215

In the corner of maximum productivity of the distribution, we find tropical forests characterized by a very shallow seasonality.

We also observe that very different ecosystems can have very similar characteristics during their peak growing season, e.g.
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Figure 2. Trajectories of some points (colored lines) and the area weighted density over principal components one and two (the gray

background shading shows the density) for (a) the raw trajectories and (b) the mean seasonal cycle. The trajectories were chosen to fill a

large area in the space of the first two principal components. Some of the trajectories in (b) have an arrow indicating the direction. The

numbers illustrate the value of some variables, for units, see tab. 1. Description of the points: Red: Tropical Rainforest, 67.625°W, 2.625°S;

Blue: Maritime climate, 7.375°E, 52.375°N; Green: Monsoon climate, 82.375°E, 22.375°N; Purple: Subtropical, 117.625°W, 34.875°N;

Orange: Continental climate, 44.875°E, 52.375°N; Yellow: Arctic climate, 119.875°E, 72.375°N;

green (located in north east India), blue (north west Germany), and orange (located close to Moscow) trajectories have very

similar characteristics during peak growing season compared to the red trajectory.

3.2.1 The Mean Seasonal Cycle of Trajectories220

As with ordinary variables, we can compute the Mean Seasonal Cycle (MSC) of the principal components summarizing the

average state of the ecosystem during the course of the year. Removing year-to-year variability and long-term trends reveals a

general characterization of the local ecosystem (cf. fig. 2b).

The global main pattern of the first principal component follows the productivity cycles during summer and winter (3, left

column) of the northern hemisphere, with positive values (high productivity, green) during summer and negative values (low225

productivity, brown) during winter. The tropics show high productivity all year. The global pattern shows the well known green

wave (Schwartz, 1994, 1998) because the first dimension integrates over all variables that correlate with plant productivity.

The second principal component (fig. 3, right column) tracks water deficiency: red and light red values indicate water

deficiency, light blue values excess water, and dark blue water growth limitation due to cold. Areas which are temperature

limited during winter but have a growing season during summer, such as boreal forests, change from dark blue in winter to230

light blue during the growing season. Areas which have low productivity during a dry season change their coloring from red to

light red during the growing season, e.g the north west of Mexico/south west of the United States.
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Observing the mean seasonal cycle of the principal components gives us a tool to characterize ecosystems and may also

serve as a basis for further analysis, such as a global comparison of ecosystems (Metzger et al., 2013; Mahecha et al., 2017).

3.2.2 Hysteresis235
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Figure 4. The area inside the mean seasonal cycle of PC1 and PC2, area is positive if direction is counterclockwise and negative if the

direction is clockwise. We can observe that most of the trajectories need a pronounced seasonal cycle to show a hysteresis effect. E.g. the

green trajectory of 2b does not show up here, because it is shaped like an 8 and therefore the clockwise and counterclockwise parts cancel

each other out.

Hysteresis in ecology means that the pathways A→B and B→A between stable states A and B can be different (Beisner

et al., 2003. These alternative paths arise from the ecosystem tracking seasonal changes in the environmental condition, e.g.

summer–winter or dry–rainy seasons (fig. 2b)).

Hysteresis is a common occurrence in ecology, e.g. in community ecology it is often cited as the reason why communities

may not recover after a disturbance, it is usually attributed to memory and lag effects (Folke et al., 2004; Blonder et al.,240

2017; Renner et al., 2019). For instance, a hysteresis loop can be found when plotting soil respiration against soil temperature

(Tang et al., 2005). The sensitivity of soil respiration to soil temperature changes seasonally due to changing soil moisture and

photosynthesis (by supplying carbon to rhyzosphere) producing a seasonally changing hysteresis effect (Gaumont-Guay et al.,

2006; Richardson et al., 2006; Zhang et al., 2018). Biological variables also show a hysteresis effect in their relations with

atmospheric variables, e.g. Mahecha et al. (2007b) found a hysteresis effect between seasonal NEE, temperature, and a number245

of other ecosystem and climate related variables.

Looking at some mean seasonal cycles of trajectories, e.g. the orange trajectory (area close to Moscow) in fig. 2b shows that

the paths between maximum and minimum productivity can be very different, in contrast to the blue trajectory located in the
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north west of Germany which also has a very pronounced yearly cycle but shows no such effect. The trajectories that show a

more pronounced hysteresis effect seem to have pronounced growing, dry, and wet seasons and therefore shift their limitations250

more strongly during the year, i.e. the moisture reserves deplete during growing season and therefore the return path has higher

values on the second principal component. We can also see that most trajectories that show hysteresis turn counterclockwise

for the same reason (see fig. 4). Usually plant growth starts when there is enough water available (low values on component

2), leading to increasing values on the first component. At the end of the growing season water resources deplete (increasing

values on component 2) and productivity decreases (decreasing values on component 1).255

3.2.3 Anomalies of the Trajectories

The deviation of the trajectories from their mean seasonal cycle should reveal anomalies and extreme events. These anomalies

have a directional component and can be therefore be interpreted the same way as the original PCs which contain information

of the underlying variables that were affected. In this sense, one can infer the state of the ecosystem during an anomalous state.

For instance the well-known Russian heatwave in summer 2010 appears in fig. 5 as a dark brown spot in the southern part of the260

affected area, indicating lower productivity and as a thin green line in the northern parts, indicating an increased productivity.

This confirms earlier reports that only the southern agricultural ecosystems were negatively affected by the heatwave, while

the northern predominantly forest ecosystems rather benefited from the heatwave in terms of primary productivity (Flach et al.,

2018).

Another example of an extreme event that we find in the PCs is the very wet November rainy season of 2006 in the Horn of265

Africa after a very dry rainy season in the previous year. This event was reported to bring heavy rainfall and flooding events

which caused an emergency for the local population but also an increased ecosystem productivity (Nicholson, 2014). The

rainfall event appears as green and blue spots in fig. 5, preceded by the drought events which appear as red and brown spots.

Fig. 5e and 5f also show the strong drought events in the Amazon, particularly the droughts of 2005 and 2010 (Doughty

et al., 2015; Feldpausch et al., 2016) appear strongly north and south of the Amazon basin. The central Amazon basin does270

not show these strong events, because the observable response of the ecosystem was buffered due to the large water storage

capacity in the central Amazon basin.

3.2.4 Single Trajectories

Observing single trajectories can give insight into past events that happen at a certain place, such as extreme events or permanent

changes in ecosystems. The creation of trajectories is an old method used by ecologists, mostly on species assembly data of275

local communities, to observe how the composition changes over time (e.g. Legendre et al., 1984; Ardisson et al., 1990). In this

context, we observe how the states of the ecosystems inside the grid-cell shift over time, which comprises a much larger area

than a local community but is probably also less sensitive to very localized impacts than a community level analysis. One of

the main differences of the method applied here to the classical ecological indicators is that the trajectories observed here are

embedded into the space spanned by a single global PCA and therefore we can compare a much broader range of ecosystems280

directly.
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Figure 6. Trajectories of the first two Principal Components for single pixels. (a) Deforestation increases the seasonal amplitude of the first

two PCs (Brazilian rainforest, 9.5°S 63.5°W). (b) The heatwave is clearly visible in the trajectory (red, Russian heatwave, summer 2010,

56°N 45.5°E). (c) Rainfall in the short raining season (November/December) influences agricultural yield and can cause flooding (extreme

flooding after drought, 11/2006, 3°N 45.5°E). (d) European heatwave in Summer 2003 was one of the strongest on record (France, 47.2°N

3.8°E). The mean seasonal cycle of the trajecotries is shown in purple.

Figure 6a shows an area in the Brazilian Amazon in Rondônia (9.5°S, 63.5°W) which has been affected by large scale land

use change and deforestation. It can be seen that the seasonal amplitude increases strongly after the beginning of 2003. Reasons

for this increased amplitude could lie in any of the following reasons or a combination of them: Deforestation decreases water

storage capability and dries out soils causing larger variability in ecosystem productivity. Therefore, during periods of no rain,285

large scale deforestation can cause a shift in local scale circulation patterns causing lower local precipitation (Khanna et al.,

2017). Crop growth and harvest causes an increased amplitude in the cycle of productivity. An analysis of the trajectory can

point to the nature of the change, however finding the exact causes for the change requires a deeper analysis.

Figure 6b shows the deviation of the trajectory during the Russian heatwave (red line) in an area east of Moscow (56°N

45.5°E). In the southern grass- and croplands, the heatwave caused the productivity to drop significantly during summer due to290

a depletion of soil moisture. In the northern forested parts affected, the heatwave caused an increase in ecosystem productivity
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Figure 7. Trends in PC1 and PC2 indicators. Trends were calculated using the Theil-Sen estimator. (a) The spatial distribution of slopes,

only significant slopes are shown (p < 0.05, Benjamini-Hochberg adjusted). The maximum cutoff for the legend limits was set symmetrically

around zero to the maximum absolute value of the 0.1 and 0.9 quantiles. (b) Distribution of spatial points in the space of the first two PCs.

The colors correspond to the ones used in (a).

during spring due to higher temperatures combined with sufficient water availability. This shows the compound nature of this

extreme event (see fig. 5a and Flach et al. 2018). The analysis of the trajectory points directly towards the different types of

extremes and responses that happened in the biosphere during the heatwave.

Variability of rainfall during the November rainy season in the Horn of Africa (3°N 45.5°E, fig. 6c) shows the trajectory295

and points in November of the observed time. The November rain has implications for food security because the second crop

season depends on it. In 2006, the rainfall events were unusually strong and caused widespread flooding and disaster but also

higher ecosystem productivity (cf. also fig. 5). This was especially devastating because it followed a long drought that caused

crop failures. Note also the two rainy seasons in the mean seasonal cycle (purple line if fig. 6c).

Figure 6d shows the trajectory during the August 2003 heat wave in Europe (France, 47.2°N 3.8°E). The heatwave was300

unprecedented and caused large scale environmental, health, and economics losses (Ciais et al., 2005; García-Herrera et al.,

2010; Miralles et al., 2014). The 2010 heatwave was stronger than the 2003 heatwave but the strongest parts of the 2010

heatwave were in eastern Europe (cf., fig. 5), while the center of the 2003 heatwave was located in France.

As we have seen here, observing single trajectories in reduced space can give us important insights into ecosystem states

and changes that occurring. While the trajectories can point us towards abnormal events, they can only be the starting points305

for deeper analysis to understand the details of such state changes.
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3.2.5 Trends in Trajectories

The accumulation of CO2 in the atmosphere should cause an increase in global productivity of plants due to CO2 fertilization,

while large and more frequent droughts and other extremes may counteract this trend. Satellite observations and models have

shown that during the last decades the world’s ecosystems have greened up during growing seasons. This is explained by CO2310

fertilization, nitrogen deposition, climate change and land cover change (Zhu et al., 2016; Huang et al., 2018; Anav et al.,

2015). Tropical forests especially showed strong greening trends during growing season.

To find local trends, we used the Theil-Sen estimator to calculate robust slopes on the trajectories. Figure 7 shows positive

and negative trends of the principal components over time. General patterns that can be observed are a positive trend (higher

productivity) on the first principal component in the arctic regions and higher temperatures. A large scale dryness trend can315

be observed across large parts of western Russia. Increasing productivity can also be observed on almost the entire Indian

subcontinent and eastern Australia. Negative trends in the first component can also be observed: they are generally smaller and

appear in regions around the Amazon and the Congo basin, but also in parts of western Australia. The main difference from

previous analyses on the observations presented here is that e.g. Zhu et al. (2016) looked only at trends during the growing

season while this analysis uses the entire time series to calculate the slope.320

In the Amazon basin, we find a dryness trend accompanied by a decrease in productivity; In the Congo basin, we find a

wetness trend and an increasing productivity in the northern parts, while the southern part and woodland south of the Congo

basin show a strong dryness trend with decreased productivity. This is different to the findings of Zhou et al. (2014), who found

a widespread browning of vegetation in the entire Congo basin for the April-May-June seasons during the period 2000–2012.

The finding of Zhou et al. (2014) is not reflected in our data, especially compared to the areas surrounding the Congo basin, we325

can find only minor browning effects. Inside the basin and our findings are more in line with the global greening (Zhu et al.,

2016), which show a browning mostly outside the Congo basin.

Almost the entire Indian subcontinent shows a trend towards higher productivity and an overall wetter climate. The greening

trend in India happens mostly over irrigated cropland, however browning trends over natural vegetation have been observed

but do not show up in our analysis (Sarmah et al., 2018).330

In the Arctic, a general trend towards higher productivity can be observed, vegetation models attribute this general increase

in productivity to CO2 fertilization and climate change. The changes also cause changes to the characteristics of the seasonal

cycles (Forkel et al., 2016). Stine et al. (2009) found a decreased seasonal amplitude of surface temperature over norther

latitudes due to winter warming.

The seasonal amplitude of atmospheric CO2 concentrations has been increasing due to climate change causing longer grow-335

ing seasons and changing vegetation cover in northern ecosystems (Forkel et al., 2016; Graven et al., 2013; Keeling et al.,

1996). Therefore we checked for trends in the seasonal amplitude, but because each time series only consists of 11 values (one

amplitude per year), after adjusting the p-values for false discovery rate, we could not find a significant slope. However, there

were many significant slopes with the unadjusted p-values, see the appendix, fig E1.
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4 Conclusions340

To monitor gradual and abrupt changes in times of global change, we used PCA to construct indicators from a large number of

data streams that track ecosystem state in space and time on a global scale. We showed that a large part of the variability of the

terrestrial biosphere can be summarized using two indicators. The first emerging indicator represents carbon exchange, while

the second indicator shows the availability of water in the ecosystem. The distribution in the space of the first two principal

components reflects the general limitations of ecosystem productivity. Ecosystem production can either be limited by water or345

energy.

The first two indicators can detect many well-known phenomena without analyzing variables separately due to their com-

pound nature. We showed that the indicators are capable of detecting seasonal hysteresis effects in ecosystems, as well as

breakpoints, e.g. large scale deforestation. The indicators can also track other changes to the seasonal cycle such as patterns

of changes to the seasonal amplitudes and trends in ecosystems. Deviations from the mean seasonal cycle of the trajectories350

indicate extreme events such as the large scale droughts in the Amazon during 2005 and 2010 and the Russian heat wave of

2010. The events are detected ina a similar fashion as with classical multivariate anomaly detection methods while directly

providing information on the underlying variables.

Using compound indicators we gain a high level overview of phenomena in ecosystems and the method therefore provides

an interesting tool for analyses where it is required to capture a wide range of phenomena which are not necessarily known a355

priori. Future research should consider nonlinearities, and work to include different subsystems, such as the atmosphere or the

anthroposphere.

Code and data availability. The data are available and can be processed at https://www.earthsystemdatalab.net/index.php/interact/data-lab/,

last accessed 28 June 2019. The data can be downloaded from https://www.earthsystemdatalab.net. The code to reproduce this analysis is

available at https://github.com/gdkrmr/BioIndicators.jl.360
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Appendix A: Breakpoints in Trajectories
ye
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Figure A1. Breakpoint detection, (a) on PC1, (b) on PC2, the color indicates the year of the biggest breakpoint if a significant breakpoint

was found, grey if there was no significant breakpoint found.

As the environmental conditions change, due to climate change and human intervention, the local ecosystems may change

gradually or abruptly. Detecting these changes is very important for monitoring the impact of climate change and land use

change onto the ecosystems. We applied breakpoint detection on the trajectories (fig. A1).

Breakpoints on the first component were found in the entire Amazon and the largest breakpoint is dated in the year 2005365

during the large drought event. The entire eastern part of Australia shows its largest breakpoint towards the end of the time

series because of a La Niña event, which caused lower temperatures and higher rainfall than usual during the years 2010 and

2011.
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Appendix B: Reconstruction Error
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Figure B1. The reconstruction error of the first two pca dimensions aggregated over variables an time by the mean of the square error. The

right plot shows the mean reconstruction error aggregated over latitudes.

In order to find ecosystems that do no fit well your model of two indicators, we calculated the reconstruction error of the first370

two PCA axes. Ecosystems that do not fit our model well show a higher reconstruction error, see fig. B1. Higher reconstruction

errors appear in extreme latitudes, areas with especially high reconstruction error are at the southern part of the Hudson Bay

area. Very limited regions in central and eastern Russia and northern Siberia.
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Appendix C: Bowen Ration
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Figure C1. The background shading show the distribution of the mean seasonal cycle of the spatial points (see fig. 2). The contour lines repre-

sent the reconstruction of the variables from the first two principal components. The reconstructed variables are (a) Latent Heat, (b) Sensible

heat, and (c) log10

( Latent Heat
Sensible Heat

)
, the log10 of the Bowen Ratio.
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Appendix D: Mean Seasonal Cycle Extrema375
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Figure D1. Shows the minimum (left column) and maximum (right column) mean seasonal cycles of GPP (upper row), Latent Heat (middle

row), and Sensible heat (lower row). This illustrates the similarity of possibly very different ecosystems in terms of productivity and lim-

itations. During peak growing season, many mid latitude areas have a similar productivity and latent energy release as tropical rainforests

(subfigure b and d). The highest maximum seasonal sensible heat loss can be found in dry areas around the world and is lowest in areas with

a wet climate such as tropical rainforests and maritime climates (subfigure f).
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Appendix E: Changes in the Seasonal Amplitude
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Figure E1. Trends in the amplitude of the yearly cycle, Theil-Sen estimators only significant slopes (p < 0.05), unadjusted, are shown.

Because there is only a single amplitude per year and therefore only 11 data points per time series, the adjusted significances are not

significant.
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Appendix F: Description of variables

Variables used describing the biosphere can be found in tab. 1, here we provide a more complete description of all variables:

Black Sky Albedo is the reflected fraction of total incoming radiation under direct hermispherical reflectance, i.e. direct

illumination (Muller et al., 2011).380

White Sky Albedo is the reflected fraction of total incoming radiation under bihemispherical reflectance, i.e. diffuse illumi-

nation (Muller et al., 2011). Together with black sky albedo it can be used to estimate the albedo under different illumination

conditions.

Evaporation [mm/day] is the amount of water evaporated per day (Martens et al., 2017), depends on the amount of available

water and energy.385

Evaporative Stress modeled water stress for plants, zero means that the vegetation has no water available for transpiration

and one means that transpiration equals potential transpiration (Martens et al., 2017).

fAPAR the fraction of absorbed photosynthetically active radiation, a proxy for plant productivity (Disney et al., 2016).

Gross Primary Productivity (GPP) [gCm−2day−1] the total amount of carbon fixed by photosynthesis (Tramontana et al.,

2016).390

Terrestrial Ecosystem Respiration (TER) [gCm−2day−1] the total amount of carbon respired by the ecosystem, includes

autotrophic and heterotropic respiration (Tramontana et al., 2016).

Net Ecosystem Exchange (NEE) [gCm−2day−1] The total exchange of carbon of the ecosystem with the atmosphere

NEE = GPP−TER (Tramontana et al., 2016).

Latent energy (LE) [Wm−2] the amount of energy lost by the surface due to evaporation (Tramontana et al., 2016).395

Sensible Heat (H) [Wm−2] the amount of energy lost by the surface due to radiation (Tramontana et al., 2016).

Root-Zone Soil Moisture [m3m−3] the moisture content of the root zone, estimated by the GLEAM model (Martens et al.,

2017).

Surface Soil Moisture [mm3mm−3] the soil moisture content at the soil surface (Martens et al., 2017).
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